

Archivos de Zootecnia

Journal website: https://www.uco.es/ucopress/az/index.php/az/

Vermicompostagem da mistura de cinza de casca de arroz com esterco bovino e serragem

Rockenbach de Almeida, G.; Gonçalves Xavier, E.; Simões Valente, B.; Buttow Roll, V.F. e Nichelle, D.C.

Departamento de Zootecnia da Faculdade de Agronomia Eliseu Maciel da Universidade Federal de Pelotas. Brasil.

Palavras chave adicionais

Eisenia andrei. Húmus. Resíduos agropecuários. Vermicomposto.

RESUMO

Objetivou-se avaliar a vermicompostagem da mistura de cinza de casca de arroz com esterco bovino e serragem. Foram utilizadas 300 minhocas adultas e cliteladas da espécie Eisenia andrei, distribuídas em um delineamento inteiramente casualizado com cinco tratamentos e quatro repetições, denominados: T1 (100% esterco bovino); T2 (50% esterco bovino + 25% serragem + 25% cinza de casca de arroz); T3 (33% esterco bovino + 33% serragem + 33% cinza de casca de arroz); T4 (25% esterco bovino + 50% serragem + 25% cinza de casca de arroz); e T5 (25% esterco bovino + 25% serragem + 50% cinza de casca de arroz). Caixas de madeira nas dimensões de 0,50 m de comprimento, 0,40 m de largura e 0,30 m de altura foram utilizadas como unidades experimentais. Concentrações maiores ou iguais a 25% de serragem proporcionam uma alta relação C/N na mistura dos substratos cinza de casca de arroz e esterco bovino. O vermicomposto produzido a partir de 100% de esterco bovino atende as recomendações da Instrução Normativa n°25/2009, sendo considerado um fertilizante orgânico estabilizado.

Vermicomposting of a mixture of rice husk ash with bovine manure and sawdust

SUMMARY

A trial was conducted to evaluate the vermicomposting of a mixture of rice husk ash with bovine manure and sawdust. A total of 300 adult earthworms (Eisenia andrei) were distributed to five treatments and four replications in a completely randomized design. The treatments were: T1 (100% bovine manure); T2 (50% bovine manure + 25% sawdust + 25% rice husk ash); T3 (33% bovine manure + 33% sawdust + 33% rice husk ash); T4 (25% bovine manure + 50% sawdust + 25% rice husk ash); and T5 (25% bovine manure + 25% sawdust + 50% rice husk ash). Twenty wooden boxes (0.50 m length, 0.40 m width, and 0.30 m height) were the experimental units. The concentrations higher or equal to 25% of sawdust provides a higher C/N ratio in a mixture of rice husk ash with bovine manure. The vermicompost obtained from 100% bovine manure complies with the Brazilian Normative Instruction number 25/2009, and it is considered a stabilized organic fertilizer.

ADDITIONAL KEYWORDS

Eisenia andrei. Humus. Agriculture residue. Vermicompost.

Information

Cronología del artículo. Recibido/Received: 13.12.2016 Aceptado/Accepted: 16.03.2018

On-line: 15.04.2018

Correspondencia a los autores/Contact e-mail:

bsvalente@terra.com.br

INTRODUÇÃO

A casca de arroz é um abundante resíduo na região Sul do Rio Grande do Sul, que contribui em média com 69% da produção nacional de arroz, o que resulta em uma produção de mais de 6,8 milhões de toneladas do grão em casca (IRGA, 2016). A produção do Estado deverá aumentar nos próximos anos em 27,2% e a área de plantio em 7,6% (MAPA, 2016). As cascas representam aproximadamente 23% da massa do arroz (Della, Kuhn & Hozta 2001, pp. 778-782) e possuem baixo valor comercial, devido ao seu alto percentual de sílica e fibras como, celulose e hemicelulose (Angel et

al. 2009, pp. 1110-1114). Entretanto, apresenta alto poder calorífico, sendo utilizada em substituição a lenha nos processos de secagem e parboilização dos grãos (Della et al. 2006, pp. 1175-1179). Cordeiro, Masuero and Molin (2014, pp. 150-158) salientam que 20% da casca de arroz é convertida em cinza, o que representa 500 mil toneladas de cinza de casca de arroz ao ano. A cinza possui baixa massa específica, o que dificulta o seu gerenciamento devido á necessidade de um grande espaço para o seu armazenamento e descarte (Calheiro et al. 2016, pp. 270-281).

Além disso, o *Pinus elliotti* é o gênero com maior área cultiva na região, abrangendo aproximadamente 183.000 há, correspondendo a 32% do total da área coberta com florestas plantadas (Ageflor, 2015). Bernal et al. (1998, pp.305-313) afirmam que apenas 50% do *Pinus elliotti* é aproveitado. O grande volume de resíduos muitas vezes é disposto no solo, o que leva a imobilização de nutrientes essenciais e altas concentrações de substâncias químicas reduzidas. O baixo teor de nitrogênio nas estruturas químicas da serragem é um fator desfavorável para sua degradação microbiológica, necessitando a adição de materiais ricos em nitrogênio, aumentando assim a relação carbono/nitrogênio (Kumar et al. 2013, pp. 11326-11331).

Por outro lado, a região Sul é destaque na produção leiteira desde 2014, quando ultrapassou pela primeira vez, a região Sudeste. Em 2015, foi responsável por 35,2% da produção nacional (IBGE, 2015). A produção de leite deverá crescer nos próximos 10 anos a uma taxa anual entre 2,3 e 3,1%, o que corresponderá a 42,9 e 47,3 bilhões de litros ao final de 2025/2026 (Mapa, 2016).

No entanto, esse aumento na produção agropecuária tem como consequencia o aumento na taxa de geração de resíduos orgânicos, que normalmente são manejados de forma inadequada pelo produtor rural. Orrico Júnior et al. (2012, pp. 1301-1307) salientam que o despejo de dejetos é uma prática usual, que acaba produzindo mudanças físicas, químicas e biológicas no solo. A sua disposição de forma inadequada no solo tem sido relacionada à contaminação de hortaliças por Salmonella sp, Scherichia coli e Staphylococcus aureus (Abreu et al. 2010, pp. 108-118), aos processos de eutrofização das águas superficiais e subterrâneas e a contaminação de alimentos por nitratos (Mori et al. 2009, pp. 189-198), demonstrando a necessidade da adoção de métodos de tratamento dos resíduos localmente produzidos (Kunz & Encarnação 2007, pp. 168-191).

A busca de conceitos técnico-científicos e a sua aplicabilidade são as soluções para os impasses do desenvolvimento e da sustentabilidade da produção agropecuária. Lazcano, Gómez-Brandón and Domínguez (2008, pp. 1013-1019) salientam que tecnologias apropriadas de gerenciamento associadas à superprodução de resíduos orgânicos podem mitigar os riscos ambientais através da sua estabilização prévia para posterior uso ou disposição no solo.

Nesse sentido, a vemicompostagem pode ser uma importante ferramenta na gestão da cinza de casca de arroz e dos resíduos agropecuários. A vermicompostagem é um processo aeróbio que envolve a fragmentação e a digestão parcial de resíduos orgânicos pelas minhocas, conjuntamente com a sua microflora intestinal, bem como micro-organismos mesófilos presentes na matéria orgânica (Vig et al. 2011, pp. 7941-1945). Fornes et al (2012, pp. 296-305) ressaltam que a fragmentação dos substratos aumenta a área de exposição aos micro-organismos, propiciando a aceleração do processo de vermicompostagem. Adicionalmente, a atividade direta das minhocas aumenta significativamente a mineralização do carbono e do nitrogênio no substrato e

tais efeitos são proporcionais a densidade de minhocas (Aira et al. 2008, pp. 2511-2516).

Objetivou-se avaliar a vermicompostagem da mistura de cinza de casca de arroz com esterco bovino e serragem.

MATERIAL E MÉTODOS

O trabalho foi realizado no Setor de Vermicompostagem do Laboratório de Ensino e Experimentação Zootécnica Professor Renato Rodrigues Peixoto (LEE-ZO) do Departamento de Zootecnia (DZ) da Faculdade de Agronomia Eliseu Maciel (FAEM) da Universidade Federal de Pelotas, localizado no município de Capão do Leão/RS.

Na vermicompostagem, as unidades experimentais constaram de caixas de madeira não aromáticas, nas dimensões de 0,50 m de comprimento, 0,40 m de largura e 0,30 m de altura, que foram alocadas em um galpão fechado, o qual proporcionou um ambiente protegido. Foram utilizados cinco tratamentos: T1 (100% esterco bovino); T2 (50% esterco bovino + 25% serragem + 25% cinza de casca de arroz); T3 (33% esterco bovino + 33% serragem + 33% cinza de casca de arroz); T4 (25% esterco bovino + 50% serragem + 25% cinza de casca de arroz); e T5 (25% esterco bovino + 25% serragem + 50% cinza de casca de arroz), com quatro repetições cada um, totalizando 20 unidades experimentais. As caixas foram preenchidas tomando-se como base o seu volume total e o volume do resíduo, conforme a proporção de cada tratamento. Foram inoculadas em cada unidade experimental, 300 minhocas adultas e cliteladas da espécie Eisenia andrei.

O teor de umidade foi verificado a cada 15 dias, através do "teste da mão" conforme método de Cooper et al. (2010, p. 21), em que o teor ótimo de umidade foi determinado pela formação de uma massa firme, quando a biomassa foi comprimida pelas mãos. Utilizou-se palha de gramínea seca como cobertura dos substratos a fim de evitar a perda de umidade.

As análises da composição química foram realizadas em triplicata, sendo que a primeira amostragem correspondeu aos substratos iniciais esterco bovino, serragem de *Pinus elliotti* e cinza de casca de arroz **(Tabela I)**. As demais análises foram realizadas na mistura inicial de esterco bovino, serragem e cinza de casca de arroz **(Tabela II)** e, aos 60 dias do período experimental.

No Laboratório de Nutrição Animal do DZ/FAEM/UFPEL foi realizada a determinação da umidade, pH e nitrogênio total (N), segundo metodologia descrita por Silva and Queiroz (2004, p. 34), e também para a análise da matéria orgânica total (MO), teor de cinzas e do C orgânico total (C), conforme metodologia descrita por Kiehl (1985, p. 36). A relação C/N foi obtida pela equação C/N = % C ÷ % N, em que % C = porcentagem de carbono orgânico total na amostra; %N = porcentagem de nitrogênio total na amostra, conforme descrito por Tedesco et al. (1995, p. 41). No Laboratório de Química do Solo do Departamento de Solos da FAEM/UFPEL foram analisados os teores totais de fósforo (P),

Tabela I. Composição química dos substratos utilizados na vermicompostagem (Chemical composition of substrates utilized during vermicomposting).

Composição	Substratos					
	Esterco bovino	Serragem	Cinza de casca de arroz			
pH	8,0±0,02	5,7±0,04	9,2±0,07			
Umidade (%)	58,1±1,02	42,2±2,02	53,1±0,30			
Cinzas (%)	29,4±0,06	1,0±1,02	91,5±1,20			
Matéria orgânica total (%)	70,6±0,06	99,0±1,02	8,5±1,20			
Carbono orgânico total (%)	39,2±0,06	55,0±1,02	4,7±1,20			
Nitrogênio total (%)	2,6±0,01	0,1±0,01	0,2±0,02			
Relação carbono/ nitrogênio	14,9±0,05	917,±1,60	22,4±1,30			
Fósforo total (g kg ⁻¹)	7,9±0,50	0,4±0,04	2,7±0,08			
Potássio total (g kg ⁻¹)	13,0±0,90	1,0±0,01	13,7±0,90			
Cálcio total (g kg ⁻¹)	14,5±1,70	0,1±0,10	6,8±0,40			
Magnésio total (g kg ⁻¹)	10,3±1,30	0,1±0,02	5,0±0,05			
Valores médios de três replicatas.						

magnésio (Mg), cálcio (Ca) e potássio (K) a partir da metodologia descrita por Tedesco et al. (1995, p. 58).

O delineamento utilizado no experimento foi inteiramente casualizado, em que cada tratamento teve quatro repetições. Os dados obtidos foram submetidos á análise de variância (ANOVA) pelo programa "Statistical Analysis System" versão 9.1 (SAS Institute Inc. 2002-2003), sendo que as médias dos tratamentos foram comparadas através do teste de Tukey a 5% de significância.

RESULTADOS

Na **Tabela III**, pode ser observado que os teores totais de MO (30,8 ± 4,74%) e de C orgânico (17,1 ± 2,63%) no T5 foram significativamente inferiores ao dos tratamentos T1 (57,4 \pm 2,00%; 31,9 \pm 4,45%), T2 (48,4 \pm 5,23%; $26,9 \pm 2,91\%$) e T4 ($56,7 \pm 5,83\%$; $31,5 \pm 3,24\%$) (p<0,05). Por outro lado, não houve diferença significativa entre os tratamentos T5 e T3 (P>0,05) para ambas as variáveis mencionadas, demonstrando que a adição de cinza de casca de arroz diminui o teor de MO da mistura inicial dos substratos e consequentemente do vermicomposto. Outro aspecto importante é o valor do teor de MO total no T5 ($30.8 \pm 4.74\%$), que está abaixo (≥ 40%) do recomendado pela Instrução Normativa nº25/2009 (Brasil, 2009), podendo prejudicar o desenvolvimento de culturas e, com o seu uso prolongado, comprometer a fertilidade do solo. Conforme esperado, verificou-se um aumento significativo do teor de cinzas no T5 (69,2 \pm 4,74%) em relação aos tratamentos T1 $(42,6 \pm 2,00\%)$, T2 $(51,6 \pm 5,23\%)$ e T4 $(43,3 \pm 5,83\%)$ (P<0,05).

No que diz respeito á relação C/N, verificou-se que o T4 (63,9 \pm 1,20%) foi significativamente superior aos tratamentos T1 (13,5/1 \pm 2,09), T2 (26,8/1 \pm 2,19), T3

(43,9/1 \pm 0,32) e T5 (33,9/1 \pm 0,65) (P<0,05). Portanto, apenas o T1 (13,5/1 \pm 2,09) apresentou a relação C/N dentro do recomendado pela Instrução Normativa n°25/2009 (Brasil, 2009), que é de \leq 14. Além disso, podem ser constatadas reduções significativas do teor de N total nos tratamentos T5 (0,5 \pm 0,07%), T4 (0,5 \pm 0,16%) e T3 (0,6 \pm 0,05%) (P<0,05).

Com relação ao pH, o tratamento T5 ($8.3 \pm 0.08\%$) foi significativamente superior aos demais tratamentos (P<0.05), mantendo-se na faixa alcalina. Contudo, cabe ressaltar que o pH manteve-se na faixa alcalina em todos os tratamentos, independente das proporções dos substratos utilizados, estando dentro do recomendado pela Instrução Normativa n°25/2009 (Brasil, 2009), que é de \geq 6.0.

O teor de umidade no tratamento T1 (72,5 \pm 0,77%) foi significativamente superior aos demais tratamentos T2 (67,9 \pm 0,77%), T3 (61,6 \pm 1,97%), T4 (62,2 \pm 2,44%) e T5(59,1 \pm 2,03%) (P<0,05). Ainda, cabe salientar que o teor de umidade de todos os vermicompostos produzidos nesse estudo está acima do recomendado pela Instrução Normativa n°25/2009 (Brasil, 2009), que é de no máximo 50%.

Considerando os conteúdos de minerais dos vermicompostos, verificou-se que o teor de P total do T5 (30,3 \pm 2,06 g kg $^{-1}$) foi significativamente superior ao do T2 (5,5 \pm 0,48 g kg $^{-1}$) (P<0,05), embora não tenham apresentado diferença estatística quanto à composição química da mistura inicial dos substratos (**Tabela II**). O teor de K no tratamento T1 (6,2 \pm 0,29 g kg $^{-1}$) foi significativamente superior ao do T4 (4,4 \pm 1,00 g kg $^{-1}$) (P<0,05), enquanto que os conteúdos de Ca (23,9 \pm 1,32 g kg $^{-1}$) e Mg (8,6 \pm 0,25 g kg $^{-1}$) no T1 foram significativamente superiores aos dos tratamentos T2, T3, T4 e T5 (P<0,05) (**Tabela III**).

DISCUSSÃO

A redução dos teores totais de MO e C orgânico no tratamento T5 podem ser explicados pelo baixo conteúdo de MO (8,5 \pm 1,20%) e o alto teor de cinzas (91,5 \pm 1,20%) presentes na composição química da cinza de casca de arroz (**Tabela I**), concordando com Antunes et al. (2015, pp. 699-708) que afirmam que dependendo da composição do material de origem, podem ocorrer variações na composição do vermicomposto. Valente et al. (2013, pp. 119-132) analisando a composição físico-química de vermicompostos comercializados no município de Pelotas/RS concluíram que a variabilidade dos substratos iniciais determina a ausência de um padrão de qualidade para o produto.

O aumento significativo do teor de cinzas no T5 expressa uma maior concentração de componentes minerais, devido ao alto teor de cinzas (71,9 \pm 2,86%) na mistura inicial dos substratos (**Tabela II**) e também em decorrência da mineralização da MO total pelas minhocas conjuntamente com sua microflora intestinal, bem como pela ação dos micro-organismos mesofílicos presentes na mistura dos substratos vermicompostados (Vig et al. 2011, pp. 7941-7945). Estudo realizado por Malinska et al. (2016, pp. 35-41) demonstraram um incremento no conteúdo de cinzas, que passou de

Tabela II. Composição química da mistura inicial de esterco bovino, serragem e cinza de casca de arroz. (Chemical composition of an initial mixture of bovine manure, sawdust and rice husk ash).

Composição	Tratamentos					
	T1	T2	Т3	T4	T5	
pH	8,0 ± 0,07	8,2 ± 0,20	8,1 ± 0,22	8,0 ± 0,25	8,4 ± 0,12	
Umidade (%)	58,1 ± 2,80	57,7 ± 1,57	$60,2 \pm 2,48$	$58,4 \pm 7,47$	62.8 ± 7.47	
Cinzas (%)	29,4 ± 1,65°	$51,3 \pm 2,48^{AB}$	45,1 ± 1,29 ^{BC}	$44,5 \pm 5,83^{BC}$	71.9 ± 2.86^{A}	
Nitrogênio total (%)	$2,6 \pm 0,49^{A}$	1.3 ± 0.35^{B}	0.7 ± 0.21^{BC}	$0.6 \pm 0.16^{\circ}$	$0.5 \pm 0.14^{\circ}$	
Matéria orgânica total (%)	$70,6 \pm 1,65^{A}$	48.7 ± 2.48^{BC}	$55,0 \pm 1,29^{AB}$	$55,5 \pm 5,83^{AB}$	$28,1 \pm 2,86^{\circ}$	
Carbono orgânico total (%)	$39,2 \pm 2,58^{A}$	27.1 ± 6.93^{BC}	$30,5 \pm 4,61^{AB}$	30.8 ± 3.23^{AB}	15,6 ± 3,25 ^c	
Relação carbono/nitrogênio	$15,7 \pm 0,74^{\circ}$	23,6 ± 1,47 ^{CB}	$45,7 \pm 1,28^{AB}$	60.9 ± 2.40^{A}	$32,7 \pm 1,66^{BC}$	
Fósforo total (g kg ⁻¹)	7.9 ± 0.36^{A}	$4,1 \pm 0.82^{B}$	$3,1 \pm 0,48^{BC}$	$2.3 \pm 0.34^{\circ}$	3.0 ± 0.26^{BC}	
Potássio total (g kg ⁻¹)	13.0 ± 0.65^{A}	$6,1 \pm 2,37^{B}$	$6,1 \pm 1,49^{B}$	$5,1 \pm 1,48^{B}$	$7,6 \pm 0,44^{B}$	
Cálcio total (g kg ⁻¹)	14,5 ± 0,24 ^A	$7,7 \pm 1,22^{B}$	$4.7 \pm 0.79^{\circ}$	$3,6 \pm 1,32^{\circ}$	$4,4 \pm 0,49^{\circ}$	
Magnésio total (g kg ⁻¹)	$10,3 \pm 0,64^{A}$	4.8 ± 0.55^{B}	$3,4 \pm 0,30^{\circ}$	$3,2 \pm 0,49^{\circ}$	4.0 ± 0.47^{BC}	

Médias seguidas de letras maiúsculas diferentes, na mesma coluna, diferem entre si pelo teste de Tukey a 5%

T1 (100% esterco bovino); T2 (50% esterco bovino + 25% serragem + 25% cinza de casca de arroz); T3 (33% esterco bovino + 33% serragem + 33% cinza de casca de arroz); T4 (25% esterco bovino + 50% serragem + 25% cinza de casca de arroz) e T5 (25% esterco bovino + 25% serragem + 50% cinza de casca de arroz).

36,37% para 45,91%, após a vermicompostagem de diferentes misturas de lodo de esgoto, palha e cinza de lascas de madeira.

As reduções nos teores de N total nos tratamentos T5, T4 e T3 são devidas á percentagem de esterco bovino na mistura inicial ser menor que 50% e também em decorrência da maior adição de serragem e de cinza de casca de arroz nos tratamentos. Na mistura inicial dos substratos, a serragem atuou como fonte de carbono enquanto que a cinza de casca de arroz enriqueceu a mistura com minerais (Tabela II). Entretanto, Zavalloni et al. (2011, p. 45-51) salientam que as cinzas de diferentes substratos orgânicos também podem induzir a imobilização de N pelos micro-organismos. Esse fato pode ser verificado ao comparar-se o teor de N, presente na mistura dos substratos iniciais (Tabela II), com o dos vermicompostos produzidos nesse estudo (Tabela III), que não diferiram estatisticamente entre si quanto ao teor desse mineral (P>0,05).

A adição de percentagens maiores ou iguais a 33% de serragem contribuiu para a alta relação C/N no T4 ao final de 60 dias de vermicompostagem. Esse fato ocorre porque a serragem apresenta uma alta relação C/N (550/1 ± 1,60), devido à baixa concentração de N total $(0.1 \pm 0.01\%)$ e o alto conteúdo de C orgânico total $(55,0 \pm 1,02\%)$. Godoy, Medeiros and Santana (2009, pp. 648-653) afirmam que a presença de componentes de difícil degradação pelos micro-organismos como a celulose, a hemicelulose e a lignina explica a alta relação C/N do substrato serragem. A baixa relação C/N inicial (Tabela I) do esterco bovino explica a estabilização do T1 ao final de 60 dias do processo. Valente et al. (2014, pp.111-122) estudando a vermicompostagem da mistura de cama de aviário e dejetos líquidos de bovinos leiteiros verificaram uma alta relação C/N (23,81/1) do vermicomposto ao final de 45 dias. Os autores salientaram que o vermicomposto produzido, ao ser incorporado no solo, poderia causar problemas aos cultivos, devido à quantidade de N ser reduzida. Haveria consumo de N do solo pelos micro-organismos heterotróficos, reduzindo assim a sua disponibilidade para as culturas, o que acarretaria uma deficiência temporária às plantas, conhecida por clorose (Kiehl 2004, p. 40).

A diferença de pH entre os tratamentos pode ser atribuída ás etapas de mineralização e a atividade microbiana que são diretamente afetadas pela produção de componentes intermediários durante o processo de estabilização da mistura dos substratos (Singh & Suthar 2012, pp. 1-6). A presença de alcalinidade em todos os tratamentos pode ser explicada pela atividade das glândulas calcíferas presentes nas minhocas, que fazem a manutenção do pH alcalino devido à ação da enzima anidrase carbônica, que catalisa a fixação do CO₂ em CaCO₃, prevenindo assim naturalmente a queda do pH (Padmavathiamma, Li & Kumari 2008, pp. 1672-1681).

O teor de umidade inicial do substrato esterco bovino (Tabela I), juntamente com a adição de água a cada 15 dias no decorrer do período experimental influenciaram os resultados. Mandal et al. (2016, p. 120-127) afirmam que o maior diâmetro dos poros das cinzas promove uma maior retenção de umidade. Entretanto, esse fato não foi constatado nesse estudo. Cotta et al. (2015, pp. 65-78) estudaram a vermicompostagem da mistura de resíduos vegetais, esterco bovino e serragem e verificaram teores menores de umidade nos tratamentos que apresentavam serragem na sua composição. Valente et al. (2016, pp. 79-88) verificaram que a redução significativa do teor de umidade (68,1% e 66,0%) nos períodos finais da vermicompostagem de dejetos líquidos de bovinos leiteiros e cama aviária não prejudicou a atividade das minhocas na degradação da MO total. Guo et al. (2012, pp. 171-178) constaram, através de teste de germinação, que o teor de umidade

Tabela III. Composição química da mistura de cinza de casca de arroz com esterco bovino, serragem ao final de 60 dias de vermicompostagem (Chemical composition of a mixture of rice husk ash with bovine manure and sawdust at the end of 60 days of vermicomposting).

Composição química		Tratamentos					
	T1	T2	Т3	T4	T5		
pH	$7,5 \pm 0,09^{\circ}$	7.8 ± 0.15^{B}	7.9 ± 0.12^{B}	8.0 ± 0.05^{B}	$8,3 \pm 0,08^{A}$	≥ 6,0	
Umidade (%)	$72,5 \pm 0,77^{A}$	67.9 ± 0.77^{B}	61,6 ± 1,97°	$62,2 \pm 2,44^{\circ}$	59,1 ± 2,03°	≤ 50%	
Cinzas (%)	$42,6 \pm 2,00^{B}$	$51,6 \pm 5,23^{B}$	$55,2 \pm 4,82^{AB}$	43.3 ± 5.83^{B}	69,2 ± 4,74 ^A	-	
Nitrogênio total (%)	$2,4 \pm 0,06^{A}$	$1,0 \pm 0,11^{B}$	$0.6 \pm 0.05^{\circ}$	$0.5 \pm 0.16^{\circ}$	$0.5 \pm 0.07^{\circ}$	≥ 0,5%	
Matéria orgânica total (%)	57,4 ± 2,00 ^A	$48,4 \pm 5,23^{A}$	44.8 ± 4.82^{AB}	$56,7 \pm 5,83^{A}$	30.8 ± 4.74^{B}	≥ 40%	
Carbono orgânico total (%)	31,9 ± 4,45 ^A	26,9 ± 2,91 ^A	$24,9 \pm 2,68^{AB}$	31,5 ± 3,24 ^A	17,1 ± 2,63 ^B	≥ 10%	
Relação carbono/nitrogênio	13,5 ± 2,09°	26.8 ± 2.19^{CB}	43.9 ± 0.32^{B}	63.9 ± 1.20^{A}	33.9 ± 0.65^{B}	≤ 14	
Fósforo total (g kg ⁻¹)	$11,7 \pm 1,20^{AB}$	$5,5 \pm 0,48^{B}$	19,1 ± 2,01 ^{AB}	$27,2 \pm 5,92^{AB}$	$30,3 \pm 2,06^{A}$	cd*	
Potássio total (g kg ⁻¹)	$6,2 \pm 0,29^{A}$	$5,7 \pm 0,54^{AB}$	4.9 ± 0.26^{AB}	$4,4 \pm 1,00^{B}$	5.7 ± 0.45^{AB}	cd*	
Cálcio total (g kg ⁻¹)	23,9 ± 1,32 ^A	$11,5 \pm 0,74^{B}$	$5,4 \pm 0,90^{\circ}$	5,5 ± 1,24°	$6,4 \pm 0,45^{\circ}$	≥ 1%	
Magnésio total (g kg ⁻¹)	$8,6 \pm 0,25^{A}$	3.7 ± 1.03^{B}	$3,1 \pm 0,45^{B}$	$2,9 \pm 0,39^{B}$	$3,5 \pm 0,22^{B}$	≥ 1%	

Médias seguidas de letras maiúsculas diferentes, na mesma coluna, diferem entre si pelo teste de Tukey a 5%.

T1 (100% esterco bovino); T2 (50% esterco bovino + 25% serragem + 25% cinza de casca de arroz); T3 (33% esterco bovino + 33% serragem + 33% cinza de casca de arroz); T4 (25% esterco bovino + 50% serragem + 25% cinza de casca de arroz) e T5 (25% esterco bovino + 25% serragem + 50% cinza de casca de arroz). *cd: conforme declarado. **Instrução Normativa n°25/2009 (BRASIL, 2009).

teve um efeito insignificante na qualidade do fertilizante orgânico.

O maior teor de P total no T5 pode ser explicado pela alta percentagem de cinza de casca de arroz, o que pode ter contribuído para uma maior atividade das minhocas na fragmentação da mistura dos substratos iniciais, aumentando assim a área de exposição aos micro-organismos. Antoniolli, Steffen and Steffen (2009, pp. 824-830) afirmam que a utilização de casca de arroz carbonizada juntamente com esterco bovino favorece a produção de cocons, demonstrando a influência do substrato na atividade das minhocas. Além disso, a ação das minhocas no substrato modifica que a sua composição microbiana (Pramanilk, Ghosh & Banik 2009, pp. 574-578) enquanto a enzima fosfatase intestinal promove a liberação desse mineral, que é solubilizado pelos micro-organismos (Suthar 2007, pp. 1608-1614) e utilizado para o seu crescimento e desenvolvimento celular (Kaosol, Kiepukdee & Towatana 2012, pp. 121-128). Malinska et al. (2017, pp. 206-214) estudando recentemente a adição de cinza de lodo de esgoto nos processos de vermicompostagem e compostagem da mistura de lodo de esgoto e maravalha também verificaram um aumento da concentração de P ao final de seis meses.

O maior teor de K no esterco bovino (13,0 ± 0,90 g kg⁻¹) possivelmente justifique o aumento significativo desse mineral no T1. Além disso, a ação conjunta das minhocas e da microflora intestinal, que promove a secreção de muco e água, pode ter aumentado à degradação do substrato ingerido e a digestão de metabólitos presentes no esterco bovino. Diferentemente, Adi and Noor (2009, pp. 1027-1030) estudaram a vermicompostagem na transformação da mistura de diferentes proporções de esterco bovino, café moído e resíduos de cozinha e verificaram maior teor de K nos tratamentos que apresentaram o substrato café moído.

Kaviraj and Sharma (2003, pp. 169-173) salientam que a produção de ácidos pelos micro-organismos durante a decomposição da MO total é o principal mecanismo para a solubilização de P e K insolúveis.

Os resultados de Ca e Mg podem ter sido influenciados pelos teores mais elevados de Ca (14,5 \pm 0,24 g kg^{-1}) e Mg (10,3 ± 0,64 g kg^{-1}) no esterco bovino (T1) que foi significativamente superior aos demais tratamentos (P<0,05) (**Tabela II**). Outro aspecto importante é a ação das glândulas calcíferas que catalisa a fixação do CO₂ em CaCO₃, como já foi mencionado anteriormente. Conjuntamente, a ação das minhocas e dos micro-organismos, na transformação do Ca e do Mg, resulta em acréscimos desses minerais no vermicomposto produzido. Diferentemente, Valente et al. (2014, pp. 111-122) investigaram a vermicompostagem no tratamento da mistura de cama aviária e dejetos líquidos de bovinos leiteiros e constataram baixo teor de Mg (8,84 ± 1,04 g kg⁻¹) no produto final. As diferenças entre os conteúdos de minerais nos tratamentos e também em alguns estudos experimentais, podem ser atribuídas às variações nas taxas de crescimento e multiplicação das minhocas nas diferentes misturas de substratos, como resultado de maiores ou menores taxas de nutrientes corporais sintetizados e liberados na forma mineralizada.

CONCLUSÕES

O processo de vermicompostagem é tecnicamente viável para o tratamento da mistura de cinza de casca de arroz com esterco bovino e serragem.

O vermicomposto produzido a partir de 100% de esterco bovino atende as recomendações da Instrução Normativa nº25/2009 para ser considerado um fertilizante orgânico estabilizado.

A adição de percentagens maiores ou iguais a 25% de serragem proporciona uma alta relação C/N na mistura dos substratos esterco bovino e cinza de casca de arroz.

BIBLIOGRAFÍA

- Adi, AJ & Noor, ZM 2009, Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. *Bioresource Technology*, vol. 100, pp. 1027-1030.
- Ageflor 2015, Associação gaúcha de empresas florestais, *Anuário Ageflor 2015*, A indústria de base florestal no RS, acessado em 6 de julho 2017, http://www.ageflor.com.br/noticias/biblioteca/anuario-ageflor-2015-ano-base-2014.pdf>.
- Angel, JDM, Vasquez, TGP, Junkes, JA & Hotza, D 2009, Caracterização de cinza obtida por combustão de casca de arroz em reator de leito fluidizado. *Química Nova*, vol. 32, no. 5, pp. 1110-1114.
- Antoniolli, ZI, Steffen, GPK & Steffen, RB 2009, Utilização de casca de arroz e esterco bovino como substrato para a multiplicação de *Eisenia fetida* Savigny (1826). *Ciência e Agrotecnologia*, vol. 33, no. 3, pp. 824-830.
- Antunes, RM, Castilhos, RMV, Castilhos, DD, Leal, OdosA, Dick, DP & Andreazza, R 2015, Transformações químicas dos ácidos húmicos durante o processo de vermicompostagem de resíduos orgânicos. Engenharia Sanitária e Ambiental, vol. 20, no. 4, pp. 699-708.
- Abreu, IMdeO, Junqueira, AMR, Peixoto, JR & Oliveira, SAde 2010, Qualidade microbiológica e produtividade de alface sob adubação química e orgânica. *Ciência e Tecnologia de Alimentos*, vol. 30, no. 1, pp. 108-118.
- Aira, M, Sampedro, L, Monroy, F & Domíguez, J 2008, Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biology and Biochemistry, vol. 40, pp. 2511-2516.
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n°25, de 23 de julho de 2009. Dispõe sobre as especificações e as garantias, as tolerâncias, o registro, a embalagem e a rotulagem dos fertilizantes orgânicos simples, mistos, compostos, organominerais e biofertilizantes destinados à agricultura, acessado em 4 fevereiro 2011, http://www.agricultura.gov.br.
- Bernal, MP, Navarro, AF, Sanchez-Monedero, MA, Roig, A & Cegarra, J 1998, Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. *Soil Biology and Biochemistry*, vol. 30, no. 3, pp. 305-313.
- Calheiro, D, Fernandes, IJ, Kieling, AG, Moraes, CAM, Kulakowki, MP & Brehm, F.A 2016, Influência da segregação granulométrica e do emprego de aditivos de moagem na adequação de cinzas de casca de arroz como coproduto. Revista Matéria, vol. 21, no. 2, pp. 270-281.
- Cordeiro, LdeNP, Masuero, AB & Molin, DCCD 2014, Análise do potencial pozolânico da cinza de casca de arroz através da técnica de refinamento Rietveld. *Revista Matéria*, vol. 19, no. 2, pp. 150-158.
- Cooper, M, Zanon, AR, Reia, MY & Morato, RW 2010, Compostagem e reaproveitamento de resíduos orgânicos agroindustriais: teórico e prático, ESALQ, Piracicaba, Brasil.
- Cotta, JAdeO, Carvalho, NLC, Brum, TdaS & Rezende, MOdeO 2015, Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitária e Ambiental, vol. 20, no. 1, pp. 65-78.
- Della, VP, Kuhn, I & Hozta, D 2001, Caracterização de cinza de casca de arroz para uso como matéria-prima na fabricação de refratários de sílica. Química Nova, vol. 24, no. 6, pp. 778-782.
- Della, VP, Hotza, D, Junkes, JA & Oliveira, APNde 2006, Estudo comparativo entre sílica obtida por lixívia ácida da casca de arroz e sílica obtida por tratamento térmico da cinza da casca de arroz. Química Nova, vol. 29, no. 6, pp. 1175-1179.
- Fornes, F, Mendoza-Hernández, D, García-de-la-fuente, R, Abad, M & Belda, RM 2012, Composting versus vermicomposting: a compara-

- tive study of organic matter evolution through straight and combined processes. *Bioresource Technology*, vol. 118, pp. 296-305.
- Godoy, JRRde, Medeiros, CM & Santana, GP 2009, Vermicompostagem de biossólido obtido de fossas sanitárias, grama e pó de serragem utilizando *Eisenia foetida* (Savigny, 1826). *Revista Ceres*, vol. 56, no. 5, pp. 648-653.
- Guo, R, Li, G, Jiang, T, Schuchardt, F, Chen, T, Zhao, Y. & Shen Y 2012, Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. *Bioresource Technology*, vol. 112, pp. 171-178.
- lbge 2015, Instituto Brasileiro de Geografia e Estatística. *Produção da Pecuária Municipal*, 43, pp. 1-49.
- Irga. Instituto Rio Grandense do Arroz. *Serie histórica de produção e produtividade-RS x BR*, acesso em 23 abril 2016, http://www.irga.rs.gov.br/upload/20150720134318producao_rs_e_brasil.pdf
- Kaosol, T, Kiepukdee, S & Towatana, P 2012, Influence of nitrogen containing wastes addition on natural aerobic composting of rice straw. American Journal of Agricultural and Biological Sciences, vol. 7, pp. 121-128.
- Kaviraj & Sharma, S 2003, Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. *Bioresource Technology*, vol. 90, pp. 169-173.
- Kiehl, EJ 1985, Fertilizantes orgânicos, Editora Agronômica Ceres Ltda, Piracicaba, Brasil.
- Kiehl, EJ 2004, Manual de compostagem: maturação e qualidade do composto, 4 ed, EJ Kiehl, Piracicaba, Brasil.
- Kumar, DS, Kumar, PS, Rajendran, NM & Anbuganapathi, G 2013, Compost maturity assessment using physicochemical, solid-state spectroscopy, and plant biossay analysis. *Journal of Agricultural and Food Chemistry*, vol. 61, no. 47, pp. 11326-11331.
- Malinska, K, Golanka, M, Cáceres, R, Rorat, A, Weisser, P & Ewelina, S 2017, Biochar amendment for integrated composting and vermicomposting of sewage sludge the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresource Technology, vol. 225, pp. 206-214.
- Malinska, K, Zabochnicka-Swiatek, M, Cárceres, R & Marfá, O 2016, The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of *Eisenia fetida* during laboratory vermicomposting. *Ecological Engineering*, vol. 90, pp. 35-41.
- Mandal, S, Thangarajan, R, Bolan, NS, Sarkar, B, Khan, N, Ok, YS & Naidu, R 2016, Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, vol. 142, pp. 120-127.
- Kunz, A. & Encarnação, R. 2007. Tratamento de dejetos animais, In Gleber, L, Palhares, JCP, Gestão ambiental na agropecuária, Embrapa Informação Tecnológica, Brasília, pp.168-191.
- Lazcano, C, Gomez-Brandón, M & Domínguez, J 2008, Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, vol. 72, pp. 1013-1019.
- Mapa. 2016. Ministério da Agricultura, Pecuária e Abastecimento. Brasil Projeções do Agronegócio 2015/2016 a 2025/2026. 7 ed., 138pp.
- Mori, HF, Favaretto, N, Pauletti, V, Dieckow, J & Santos, WLdos 2009, Perda de água, solo e fósforo com aplicação de dejeto líquido bovino em latossolo sob plantio direto e com chuva simulada. *Revista Brasileira de Ciência do Solo*, vol. 33, pp. 189-198.
- Orrico Junior, MAP, Orrico, ACA, Lucas Junior, J, Sampaio, AAM, Fernandes, ARM & Oliveira, EA 2012, Compostagem dos dejetos da bovinocultura de corte: influência do período, do genótipo e da dieta. Revista Brasileira de Zootecnia, vol. 41, no. 5, pp. 1301-1307.
- Padmavathiamma, PK, Li, LY & Kumari, UR 2008, An experimental study of vermin-biowaste composting for agricultural soil improvement. Bioresource Technology, vol. 99, pp. 1672-1681.
- Pramanik, P, Ghosh, GK & Banik, P 2009, Effect of microbial inoculation during vermicomposting of different organic substrates on microbial status and quantification and documentation of acid phosphatase. Waste Management, vol. 29, pp. 574–578.
- SAS Institute Inc. 2002-2003. Statistical analysis system. Release 9.1. (Software). Cary. USA.

- Silva, DJ & Queiroz, ACde 2004, Análise de Alimentos: Métodos Químicos e Biológicos, Universidade Federal de Viçosa, Viçosa, Brasil.
- Singh, D & Suthar, S 2012, Vermicomposting of herbal pharmaceutical industry solid wastes. *Ecologica Engineering*, vol. 39, pp. 1-6.
- Suthar, S 2007, Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresource Technology, vol. 98, pp. 1608-1614.
- Tedesco, MJ, Gianello, C, Bissani, CA, Bohnen, H & Volkwweiss, SJ 1995, Análises de solo, plantas e outros materiais, Faculdade de Agronomia/UFRGS, Porto Alegre, Brasil.
- Valente, BS, Xavier, EG, Manzke, NE, Almeida, GRde & Roll, VFB 2013, Composição físico-química de vermicompostos comercializados na região do município de Pelotas/RS. *Revista Varia Scientia Agrárias*, vol. 3, no. 1, pp. 119-132.
- Valente, BS, Xavier, EG, Moraes, PdeO, Pilotto, MVT& Pereira, HdaS 2014, Compostagem em pilhas e vermicompostagem no tratamento

- da mistura de cama de aviário e dejetos líquidos de bovinos leiteiros. Augmdomus, vol. 6, pp. 111-122.
- Valente, BS, Xavier, EG, Lopes, M, Pereira, HdaS & Roll, VFB 2016, Compostagem e vermicompostagem de dejetos líquidos de bovinos leiteiros e cama aviária. *Archivos de Zootecnia*, vol. 65, no. 249, pp. 79-88.
- Vig, AP, Singh, J, Wani, SH & Dhaliwal, SS 2011, Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm *Eisenia foetida* (Savigny). *Bioresource Technology*, vol. 102, pp. 7941-7945.
- Zavalloni, C, Alberti, G, Biasiol, S, Vedove, GD, Fomasier, F, Liu, J & Peressotti, A 2011, Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. *Applied Soil Ecology*, vol. 50, pp. 45-51.