DENOMINACIÓN DE LA ASIGNATURA

Denominación: VISIÓN 3D Y APLICACIONES(V3D)

Código: 634003

Plan de estudios: MÁSTER UNIVERSITARIO EN INTELIGENCIA Curso: 1

COMPUTACIONAL E INTERNET DE LAS COSAS

Créditos ECTS: 4.0 Horas de trabajo presencial: 30

Porcentaje de presencialidad: 30.0% Horas de trabajo no presencial: 70

Plataforma virtual:

DATOS DEL PROFESORADO

Nombre: MUÑOZ SALINAS, RAFAEL (Coordinador)
Departamento: INFORMÁTICA Y ANÁLISIS NUMÉRICO

Área: CIENCIA DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL

Ubicación del despacho: Edificio C3, Campus Rabanales

E-Mail: in1musar@uco.es Teléfono: 957 21 2283

Nombre: MADRID CUEVAS, FRANCISCO JOSE

Departamento: INFORMÁTICA Y ANÁLISIS NUMÉRICO

Área: CIENCIA DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL

Ubicación del despacho: Edificio C3, Campus Rabanales

E-Mail: ma1macuf@uco.es Teléfono: 957 21 10 35

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno

Recomendaciones

Conocimientos de programación en C++ nivel medio.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

COMPETENCIAS

	CG1	Obtener información, diseñar experimentos e interpretar resultados en los ámbitos de la Inteligencia
		Computacional y el Internet de las Cosas
	CG2	Manejar las fuentes de información científica y recursos útiles para el estudio y la investigación en los
		ámbitos de la Inteligencia Computacional y el Internet de las cosas
	CG3	Realizar una correcta comunicación oral, escrita y gráfica en los ámbitos de la Inteligencia
		Computacional y el Internet de las cosas, tanto en niveles científicos como divulgativos
	CB7	Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de
		problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o
		multidisciplinares9 relacionados con su área de conocimiento.
	CB8	Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de
		formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones
		sobre las responsabilidades sociales y éticas vinculadas a la aplicación
	CB9	Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las
		sustentan a públicos especializados y no especializados, de un modo claro y sin ambigüedades
	CB10	Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de
		un modo que habrá de ser en gran medida autodirigido o autónomo.
	CT2	Integrar conocimientos y formular juicios y propuestas aplicativas complejas.
	CT3	Aplicar los conocimientos adquiridos en la resolución de problemas en contextos nuevos.
	CE9	Modelar un problema que requiera visión 3D, su implantación y puesta en marcha mediante los
		dispositivos existentes

OBJETIVOS

RESULTADOS DE APRENDIZAJE

EL ALUMNO CONOCERÁ LAS PRINCIPALES REVISTAS Y CONGRESOS CIENTÍFICOS RELACIONADOS CON LA VISIÓN 3D. (JUSTIFICA COMPETENCIAS.

El alumno será capaz de comprender, aplicar e integrar los fundamentos teóricos prácticos diseño e implementación de un sistema capaz de extraer la información tridimensional de una escena.

El alumno será capaz de seleccionar la tecnología apropiada a casos concretos, conociendo las ventajas y desventajas de cada una de ellas.

El alumno conocerá las bases de los principales algoritmos relacionados con la Visión 3D.

El alumno conocerá las principales estructuras de datos utilizadas en el modelado 3D de escenas y el software relacionado.

El alumno será capaz de diseñar experimentos e interpretarlos usando para ello los medios de información científica relevante para ello, así como expresar y comunicar los resultados obtenidos.

CONTENIDOS

1. Contenidos teóricos

- Introducción a la Visión Artificial: imagen digital, procesamiento dominio espacial y filtrado
- Conceptos básicos de Visión 3D: Calibración, Modelo proyectivo, rectificación, Iterative Closest Point, optimización, etc.
- Sistemas Pasivos de reconstrucción 3D: visión estéreo, SFM, Shape From X, CNN, etc.
- Sistemas Activos: Structure Light Systems, Kinet, LiDAR, Motion Capture System, Scanner 3D, etc.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

2. Contenidos prácticos

Introducción a OpenCV
Procesamiento puntual
Filtrado lineal
Calibración y estimación de la pose
Sistema de marcadores fiduciales
Reconstrucción de la escena 3D

OBJETIVOS DE DESARROLLO SOSTENIBLE RELACIONADOS CON LOS CONTENIDOS

Sin relación

METODOLOGÍA

Actividades presenciales

Actividad	Total
Actividades de evaluación	2
Estudio de casos	8
Laboratorio	10
Lección magistral	10
Total horas:	30

Actividades no presenciales

Actividad	Total
Búsqueda de información	2
Consultas bibliográficas	2
Ejercicios	25
Estudio	25
Problemas	16
Total horas:	70

MATERIAL DE TRABAJO PARA EL ALUMNO

Casos y supuestos prácticos Cuaderno de Prácticas Ejercicios y problemas

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

EVALUACIÓN

Instrumentos	Porcentaje
Casos y supuestos prácticos	35%
Examen final	30%
Informes/memorias de prácticas	35%

Periodo de validez de las calificaciones parciales:

Los trabajos se guardan hasta las convocatorias de Febrero.

Aclaraciones:

En las convocatorias extraordinarias, la nota consistirá exclusivamente en un examen final.

Aclaraciones:

BIBLIOGRAFIA

1. Bibliografía básica

- Hartley, R.I. and Zisserman, A. "Multiple View Geometry in Computer Vision", Cambridge University Press, ISBN: 0521540518
- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011 Online: https://szeliski.org/Book/1stEdition.htm

2. Bibliografía complementaria

- Adrian Kaehler, Gary Bradski, "Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library", O'REILLY
- Alberto Fernandez Villan, "Mastering OpenCV 4 with Python", Packt, 2019

Las estrategias metodológicas y el sistema de evaluación contempladas en esta Guía Docente serán adaptadas de acuerdo a las necesidades presentadas por estudiantes con discapacidad y necesidades educativas especiales en los casos que se requieran.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA